/
/
opt
/
hc_python
/
lib
/
python3.12
/
site-packages
/
sentry_sdk
/
integrations
Server: server63.web-hosting.com (198.54.116.184)
You: 216.73.216.187
PHP 7.4.33
Dir:
/opt/hc_python/lib/python3.12/site-packages/sentry_sdk/integrations
Edit:
/opt/hc_python/lib/python3.12/site-packages/sentry_sdk/integrations/huggingface_hub.py
import inspect from functools import wraps import sentry_sdk from sentry_sdk.ai.monitoring import record_token_usage from sentry_sdk.ai.utils import set_data_normalized from sentry_sdk.consts import OP, SPANDATA from sentry_sdk.integrations import DidNotEnable, Integration from sentry_sdk.scope import should_send_default_pii from sentry_sdk.tracing_utils import set_span_errored from sentry_sdk.utils import ( capture_internal_exceptions, event_from_exception, ) from typing import TYPE_CHECKING if TYPE_CHECKING: from typing import Any, Callable, Iterable try: import huggingface_hub.inference._client except ImportError: raise DidNotEnable("Huggingface not installed") class HuggingfaceHubIntegration(Integration): identifier = "huggingface_hub" origin = f"auto.ai.{identifier}" def __init__(self, include_prompts=True): # type: (HuggingfaceHubIntegration, bool) -> None self.include_prompts = include_prompts @staticmethod def setup_once(): # type: () -> None # Other tasks that can be called: https://huggingface.co/docs/huggingface_hub/guides/inference#supported-providers-and-tasks huggingface_hub.inference._client.InferenceClient.text_generation = ( _wrap_huggingface_task( huggingface_hub.inference._client.InferenceClient.text_generation, OP.GEN_AI_GENERATE_TEXT, ) ) huggingface_hub.inference._client.InferenceClient.chat_completion = ( _wrap_huggingface_task( huggingface_hub.inference._client.InferenceClient.chat_completion, OP.GEN_AI_CHAT, ) ) def _capture_exception(exc): # type: (Any) -> None set_span_errored() event, hint = event_from_exception( exc, client_options=sentry_sdk.get_client().options, mechanism={"type": "huggingface_hub", "handled": False}, ) sentry_sdk.capture_event(event, hint=hint) def _wrap_huggingface_task(f, op): # type: (Callable[..., Any], str) -> Callable[..., Any] @wraps(f) def new_huggingface_task(*args, **kwargs): # type: (*Any, **Any) -> Any integration = sentry_sdk.get_client().get_integration(HuggingfaceHubIntegration) if integration is None: return f(*args, **kwargs) prompt = None if "prompt" in kwargs: prompt = kwargs["prompt"] elif "messages" in kwargs: prompt = kwargs["messages"] elif len(args) >= 2: if isinstance(args[1], str) or isinstance(args[1], list): prompt = args[1] if prompt is None: # invalid call, dont instrument, let it return error return f(*args, **kwargs) client = args[0] model = client.model or kwargs.get("model") or "" operation_name = op.split(".")[-1] span = sentry_sdk.start_span( op=op, name=f"{operation_name} {model}", origin=HuggingfaceHubIntegration.origin, ) span.__enter__() span.set_data(SPANDATA.GEN_AI_OPERATION_NAME, operation_name) if model: span.set_data(SPANDATA.GEN_AI_REQUEST_MODEL, model) # Input attributes if should_send_default_pii() and integration.include_prompts: set_data_normalized( span, SPANDATA.GEN_AI_REQUEST_MESSAGES, prompt, unpack=False ) attribute_mapping = { "tools": SPANDATA.GEN_AI_REQUEST_AVAILABLE_TOOLS, "frequency_penalty": SPANDATA.GEN_AI_REQUEST_FREQUENCY_PENALTY, "max_tokens": SPANDATA.GEN_AI_REQUEST_MAX_TOKENS, "presence_penalty": SPANDATA.GEN_AI_REQUEST_PRESENCE_PENALTY, "temperature": SPANDATA.GEN_AI_REQUEST_TEMPERATURE, "top_p": SPANDATA.GEN_AI_REQUEST_TOP_P, "top_k": SPANDATA.GEN_AI_REQUEST_TOP_K, "stream": SPANDATA.GEN_AI_RESPONSE_STREAMING, } for attribute, span_attribute in attribute_mapping.items(): value = kwargs.get(attribute, None) if value is not None: if isinstance(value, (int, float, bool, str)): span.set_data(span_attribute, value) else: set_data_normalized(span, span_attribute, value, unpack=False) # LLM Execution try: res = f(*args, **kwargs) except Exception as e: _capture_exception(e) span.__exit__(None, None, None) raise e from None # Output attributes finish_reason = None response_model = None response_text_buffer: list[str] = [] tokens_used = 0 tool_calls = None usage = None with capture_internal_exceptions(): if isinstance(res, str) and res is not None: response_text_buffer.append(res) if hasattr(res, "generated_text") and res.generated_text is not None: response_text_buffer.append(res.generated_text) if hasattr(res, "model") and res.model is not None: response_model = res.model if hasattr(res, "details") and hasattr(res.details, "finish_reason"): finish_reason = res.details.finish_reason if ( hasattr(res, "details") and hasattr(res.details, "generated_tokens") and res.details.generated_tokens is not None ): tokens_used = res.details.generated_tokens if hasattr(res, "usage") and res.usage is not None: usage = res.usage if hasattr(res, "choices") and res.choices is not None: for choice in res.choices: if hasattr(choice, "finish_reason"): finish_reason = choice.finish_reason if hasattr(choice, "message") and hasattr( choice.message, "tool_calls" ): tool_calls = choice.message.tool_calls if ( hasattr(choice, "message") and hasattr(choice.message, "content") and choice.message.content is not None ): response_text_buffer.append(choice.message.content) if response_model is not None: span.set_data(SPANDATA.GEN_AI_RESPONSE_MODEL, response_model) if finish_reason is not None: set_data_normalized( span, SPANDATA.GEN_AI_RESPONSE_FINISH_REASONS, finish_reason, ) if should_send_default_pii() and integration.include_prompts: if tool_calls is not None and len(tool_calls) > 0: set_data_normalized( span, SPANDATA.GEN_AI_RESPONSE_TOOL_CALLS, tool_calls, unpack=False, ) if len(response_text_buffer) > 0: text_response = "".join(response_text_buffer) if text_response: set_data_normalized( span, SPANDATA.GEN_AI_RESPONSE_TEXT, text_response, ) if usage is not None: record_token_usage( span, input_tokens=usage.prompt_tokens, output_tokens=usage.completion_tokens, total_tokens=usage.total_tokens, ) elif tokens_used > 0: record_token_usage( span, total_tokens=tokens_used, ) # If the response is not a generator (meaning a streaming response) # we are done and can return the response if not inspect.isgenerator(res): span.__exit__(None, None, None) return res if kwargs.get("details", False): # text-generation stream output def new_details_iterator(): # type: () -> Iterable[Any] finish_reason = None response_text_buffer: list[str] = [] tokens_used = 0 with capture_internal_exceptions(): for chunk in res: if ( hasattr(chunk, "token") and hasattr(chunk.token, "text") and chunk.token.text is not None ): response_text_buffer.append(chunk.token.text) if hasattr(chunk, "details") and hasattr( chunk.details, "finish_reason" ): finish_reason = chunk.details.finish_reason if ( hasattr(chunk, "details") and hasattr(chunk.details, "generated_tokens") and chunk.details.generated_tokens is not None ): tokens_used = chunk.details.generated_tokens yield chunk if finish_reason is not None: set_data_normalized( span, SPANDATA.GEN_AI_RESPONSE_FINISH_REASONS, finish_reason, ) if should_send_default_pii() and integration.include_prompts: if len(response_text_buffer) > 0: text_response = "".join(response_text_buffer) if text_response: set_data_normalized( span, SPANDATA.GEN_AI_RESPONSE_TEXT, text_response, ) if tokens_used > 0: record_token_usage( span, total_tokens=tokens_used, ) span.__exit__(None, None, None) return new_details_iterator() else: # chat-completion stream output def new_iterator(): # type: () -> Iterable[str] finish_reason = None response_model = None response_text_buffer: list[str] = [] tool_calls = None usage = None with capture_internal_exceptions(): for chunk in res: if hasattr(chunk, "model") and chunk.model is not None: response_model = chunk.model if hasattr(chunk, "usage") and chunk.usage is not None: usage = chunk.usage if isinstance(chunk, str): if chunk is not None: response_text_buffer.append(chunk) if hasattr(chunk, "choices") and chunk.choices is not None: for choice in chunk.choices: if ( hasattr(choice, "delta") and hasattr(choice.delta, "content") and choice.delta.content is not None ): response_text_buffer.append( choice.delta.content ) if ( hasattr(choice, "finish_reason") and choice.finish_reason is not None ): finish_reason = choice.finish_reason if ( hasattr(choice, "delta") and hasattr(choice.delta, "tool_calls") and choice.delta.tool_calls is not None ): tool_calls = choice.delta.tool_calls yield chunk if response_model is not None: span.set_data( SPANDATA.GEN_AI_RESPONSE_MODEL, response_model ) if finish_reason is not None: set_data_normalized( span, SPANDATA.GEN_AI_RESPONSE_FINISH_REASONS, finish_reason, ) if should_send_default_pii() and integration.include_prompts: if tool_calls is not None and len(tool_calls) > 0: set_data_normalized( span, SPANDATA.GEN_AI_RESPONSE_TOOL_CALLS, tool_calls, unpack=False, ) if len(response_text_buffer) > 0: text_response = "".join(response_text_buffer) if text_response: set_data_normalized( span, SPANDATA.GEN_AI_RESPONSE_TEXT, text_response, ) if usage is not None: record_token_usage( span, input_tokens=usage.prompt_tokens, output_tokens=usage.completion_tokens, total_tokens=usage.total_tokens, ) span.__exit__(None, None, None) return new_iterator() return new_huggingface_task
Ukuran: 14.6 KB